Marcadores hemáticos y reactantes de fase aguda como estrategia para diferenciar entre tuberculosis pulmonar y neumonía adquirida en la comunidad: un estudio de cohorte retrospectivo
Contenido principal del artículo
Resumen
Objetivo: Determinar el rendimiento diagnóstico de los diferentes tipos de índices celulares solos o en combinación con proteína C reactiva (PCR) para distinguir entre Tuberculosis Pulmonar (TP) y Neumonía Adquirida en la Comunidad (NAC).
Métodos: Se realizó un estudio de cohorte retrospectivo en un centro de atención de alta complejidad en Colombia, evaluando diferentes tipos de índices celulares en pacientes con TP y NAC. Se trazó una curva característica operativa del receptor (ROC) y se calculó el área bajo la curva ROC para cada uno de estos índices, así como para los valores de CRP y procalcitonina.
Resultados: Un total de 544 sujetos fueron incluidos en el análisis final. De estos, 270 (49,6%) fueron diagnosticados de TP y 274 (50,4%) de NAC. Los pacientes con NAC tenían niveles significativamente más altos de leucocitos, neutrófilos, monocitos, hemoglobina, hematocrito y plaquetas que los pacientes con TP (p < 0,05 para todas las comparaciones). La procalcitonina no mostró diferencias significativas entre los grupos (p=0,061). La PCR tiene la curva ROC más alta para diferenciar entre TP y NAC, con una curva ROC de 0,76 (IC del 95 %: 0,71-0,88) y 0,75 (IC del 95 %: 0,71-0,80), respectivamente. La procalcitonina no mostró poder discriminatorio para estas dos enfermedades, con una curva ROC de 0,60 (IC 95%: 0,50-0,71).
Conclusión: La PCR y los marcadores hemáticos fueron los mejores marcadores para diferenciar entre pacientes con TP y NAC. El desempeño de estos marcadores fue aceptable, lo que sugiere que podrían ser útiles en el entorno clínico para la sospecha de tuberculosis o NAC.
Detalles del artículo
Citas
Trautmann M, Ruhnke M, Held T, Weinke T. Complicated tuberculosis and residual disease. Immunobiology. 1994;191(4-5):344-50. https://doi.org/10.1016/S0171-2985(11)80439-0
Kochanek KD, Murphy SL, Xu J, Arias E. National Vital Statistics Reports Volume 68, Number 9 June 24, 2019 Deaths: Final Data for 2017. 2019;68(9). Available: https://www.cdc.gov/nchs/data/nvsr/nvsr68/ nvsr68_09-508.pdf
Glaziou P, Floyd K, Raviglione MC. Global Epidemiology of Tuberculosis. Semin Respir Crit Care Med. 2018;39(3):271-85. https://doi.org/10.1055/s-0038-1651492
Kunimoto D, Long R. Tuberculosis: still overlooked as a cause of community-acquired pneumonia--how not to miss it. Respir Care Clin N Am. 2005;11(1):25-34. https://doi.org/10.1016/j.rcc.2004.10.007
Dheda K, Makambwa E, Esmail A. The Great Masquerader: Tuberculosis Presenting as Community-Acquired Pneumonia. Semin Respir Crit Care Med. 2020;41(4):592-604. https://doi.org/10.1055/s-0040-1710583
Grossman RF, Hsueh PR, Gillespie SH, Blasi F. Community-acquired pneumonia and tuberculosis: differential diagnosis and the use of fluoroquinolones. Int J Infect Dis. 2014;18:14-21. https://doi.org/10.1016/j.ijid.2013.09.013
Olson G, Davis AM. Diagnosis and Treatment of Adults With Community- Acquired Pneumonia. Jama. 2020;323(9):885-6. https://doi.org/10.1001/jama.2019.21118
Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018;18(7):e183-e98. https://doi.org/10.1016/S1473-3099(18)30110-5
Hunton R. Updated concepts in the diagnosis and management of community-acquired pneumonia. Jaapa. 2019;32(10):18-23. https://doi.org/10.1097/01.JAA.0000580528.33851.0c
Su WL, Perng WC, Huang CH, Yang CY, Wu CP, Chang FY, et al. Identification of cytokines in whole blood for differential diagnosis of tuberculosis versus pneumonia. Clin Vaccine Immunol. 2010;17(5):771-7. https://doi.org/10.1128/CVI.00526-09
Sun T, Wu B, Luo Z, Wang J, Deng S, Huang Q. Cell population data in identifying active tuberculosis and community-acquired pneumonia. Open Med (Wars). 2021;16(1):1143-9. https://doi.org/10.1515/med-2021-0322
Buttle TS, Hummerstone CY, Billahalli T, Ward RJB, Barnes KE, Marshall NJ, et al. The monocyte-to-lymphocyte ratio: Sex-specific differences in the tuberculosis disease spectrum, diagnostic indices and defining normal ranges. PLoS One. 2021;16(8):e0247745. https://doi.org/10.1371/journal.pone.0247745
Zawiah M, Hayat Khan A, Abu Farha R, Usman A, Bitar AN. Neutrophil- lymphocyte ratio, monocyte-lymphocyte ratio, and platelet- lymphocyte ratio in stroke-associated pneumonia: a systematic review and meta-analysis. Curr Med Res Opin. 2023;39(3):475-82. https://doi.org/10.1080/03007995.2023.2174327
Jeon Y, Lee WI, Kang SY, Kim MH. Neutrophil-to-Monocyte-Plus- Lymphocyte Ratio as a Potential Marker for Discriminating Pulmonary Tuberculosis from Nontuberculosis Infectious Lung Diseases. Lab Med. 2019;50(3):286-91.
https://doi.org/10.1093/labmed/lmy083
Berhane M, Melku M, Amsalu A, Enawgaw B, Getaneh Z, Asrie F. The Role of Neutrophil to Lymphocyte Count Ratio in the Differential Diagnosis of Pulmonary Tuberculosis and Bacterial Community-Acquired Pneumonia: a Cross-Sectional Study at Ayder and Mekelle Hospitals, Ethiopia. Clin Lab. 2019;65(4). https://doi.org/10.7754/Clin.Lab.2018.180833
de Jager CP, van Wijk PT, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care. 2010;14(5):R192. https://doi.org/10.1186/cc9309
Yoon NB, Son C, Um SJ. Role of the neutrophil-lymphocyte count ratio in the differential diagnosis between pulmonary tuberculosis and bacterial community-acquired pneumonia. Ann Lab Med. 2013;33(2):105-10.
https://doi.org/10.3343/alm.2013.33.2.105
Niu WY, Wan YG, Li MY, Wu ZX, Zhang LG, Wang JX. The diagnostic value of serum procalcitonin, IL-10 and C-reactive protein in community acquired pneumonia and tuberculosis. Eur Rev Med Pharmacol Sci. 2013;17(24):3329-33. PMID: 24379064
Kang YA, Kwon SY, Yoon HI, Lee JH, Lee CT. Role of C-reactive protein and procalcitonin in differentiation of tuberculosis from bacterial community acquired pneumonia. Korean J Intern Med. 2009;24(4):337-42. https://doi.org/10.3904/kjim.2009.24.4.337
Yoon C, Chaisson LH, Patel SM, Allen IE, Drain PK, Wilson D, et al. Diagnostic accuracy of C-reactive protein for active pulmonary tuberculosis: a meta-analysis. Int J Tuberc Lung Dis. 2017;21(9):1013-9. https://doi.org/10.5588/ijtld.17.0078
Ben Amar J, Zaibi H, Bouzid K, Azzabi S, Bacca MA, Dahari B, et al. Role of procalcitonin and c-reactive protein levels: a diagnostic tool in lower respiratory tract infections. Tunis Med. 2016;94(3):176-80. PMID: 27575499
Mendelson F, Griesel R, Tiffin N, Rangaka M, Boulle A, Mendelson M, et al. C-reactive protein and procalcitonin to discriminate between tuberculosis, Pneumocystis jirovecii pneumonia, and bacterial pneumonia in HIV- infected inpatients meeting WHO criteria for seriously ill: a prospective cohort study. BMC Infect Dis. 2018;18(1):399.
https://doi.org/10.1186/s12879-018-3303-6
Hohenthal U, Hurme S, Helenius H, Heiro M, Meurman O, Nikoskelainen J, et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect. 2009;15(11):1026-32.
https://doi.org/10.1111/j.1469-0691.2009.02856.x
Teixeira N, Dabó H, Gomes I, Marques A. C-reactive protein in pulmonary tuberculosis-correlation with extent and severity of the disease. Eur Respiratory Soc; 2012. Available: https://www.ers-education.org/lr/show- details/?idP=121135
Kwas H, Guermazi E, Zendah I, Jemia EB, Khattab A, Khouaja I, et al. C-reactive protein and pulmonary tuberculosis: What correlation with disease severity. Eur Respiratory Soc; 2015. Available: https://www.ers- education.org/lr/show-details/?idP=147479 https://doi.org/10.1183/13993003.congress-2015.PA2751
Chen G, Wu C, Luo Z, Teng Y, Mao S. Platelet-lymphocyte ratios: a potential marker for pulmonary tuberculosis diagnosis in COPD patients. Int J Chron Obstruct Pulmon Dis. 2016;11:2737-40. https://doi.org/10.2147/COPD
Fox KA, Kirwan DE, Whittington AM, Krishnan N, Robertson BD, Gilman RH, et al. Platelets Regulate Pulmonary Inflammation and Tissue Destruction in Tuberculosis. Am J Respir Crit Care Med. 2018;198(2):245-55.
https://doi.org/10.1164/rccm.201710-2102OC
Kullaya V, van der Ven A, Mpagama S, Mmbaga BT, de Groot P, Kibiki G, et al. Platelet-monocyte interaction in Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2018;111:86-93. https://doi.org/10.1016/j.tube.2018.05.002
Han Y, Kim SJ, Lee SH, Sim YS, Ryu YJ, Chang JH, et al. High blood neutrophil- lymphocyte ratio associated with poor outcomes in miliary tuberculosis. J Thorac Dis. 2018;10(1):339-46. https://doi.org/10.21037/jtd.2017.12.65