Análisis de Anticuerpos IgG contra el SARS-CoV-2 y Coronavirus Estacionales en Adultos Vacunados contra la COVID-19, 2021

Contenido principal del artículo

Delia Piedad Recalde-Reyes
Carlos Andrés Rodríguez-Salazar

Resumen

Introducción: La variabilidad en la respuesta inmunológica a las vacunas puede afectar su eficacia, por lo cual es importante estudiar la efectividad de los esquemas vacunales contra el SARS-CoV-2 en diferentes regiones. Objetivo: Describir niveles de IgG contra SARS-CoV-2 y coronavirus estacionales, en individuos vacunados en Armenia (Colombia) 2021. Materiales y métodos: Estudio realizado en 100 adultos de Armenia (Colombia) vacunados contra SARS-CoV-2 en 2021. Se empleó el estuche comercial Mikrogen™ recomLine-SARS-CoV-2 IgG para medir niveles de anticuerpos contra: nucleoproteína, proteína de espícula y dominio de unión al receptor del SARS-CoV-2, también contra nucleoproteínas de coronavirus estacionales (OC43, NL63, 229E y HKU1). Resultados: El 98% de individuos (vacunados y/o infectados), desarrollaron anticuerpos; se observó mayor nivel de anticuerpos en individuos vacunados con Pfizer.  Se evidenció, que los niveles de anticuerpos disminuyeron con el aumento de la edad. Por otra parte, el 47% desarrolló anticuerpos contra coronavirus estacionales; OC43 fue la cepa más común en hombres y NL63 en mujeres. Conclusión: Las vacunas mostraron ser efectivas para inducir una respuesta immune humoral en la población de estudio; aquellos con antecedentes de infección por SARS-CoV-2 tuvieron niveles de IgG más altos. El análisis de coronavirus estacionales demuestra que esta familia viral circula con frecuencia en nuestro país.

Detalles del artículo

Sección
Articulos Originales

Citas

Ljubin-Sternak S, Mestrovic T, Luksic I, Mijac M, Vranes J. Seasonal Coronaviruses and Other Neglected Respiratory Viruses: A Global Perspective and a Local Snapshot. Front Public Heal. 2021;9:1-10. https://doi.org/10.3389/fpubh.2021.691163

Shah MM, Winn A, Dahl RM, Kniss KL, Silk BJ, Killerby ME. Seasonality of Common Human Coronaviruses, United States, 2014-20211. Emerg Infect Dis. 2022;28(10):1970-1976. https://doi.org/10.3201/eid2810.220396

Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol. 2020;85:104502. https://doi.org/10.1016/j.meegid.2020.104502

Avolio M, Venturini S, De Rosa R, Crapis M, Basaglia G. Epidemiology of respiratory virus before and during COVID-19 pandemic. Infez Med. 2022;30(1):104-108. https://doi.org/10.53854/liim-3001-12

Sayama Y, Okamoto M, Saito M, Saito-Obata M, Tamaki R, Dahlia C, et al. Seroprevalence of four endemic human coronaviruses and, reactivity and neutralization capability against SARS-CoV-2 among children in the Philippines. Sci Rep. 2023;13(1):2310. https://doi.org/10.1038/s41598-023-29072-3

Gorse GJ, Patel GB, Vitale JN, O'Connor TZ. Prevalence of Antibodies to Four Human Coronaviruses Is Lower in Nasal Secretions than in Serum. Clin Vaccine Immunol. 2010;17(12):1875-1880. https://doi.org/10.1128/CVI.00278-10

HASOKSUZ M, KILIC S, SARAC F. Coronaviruses and SARS-COV-2. TURKISH J Med Sci. 2020;50(SI-1):549-556. https://doi.org/10.3906/sag-2004-127

Bai Z, Cao Y, Liu W, Li J. Structure, Biological Functions, and a Potential Target for Drug. Viruses. 2021;13(1115):1-13. https://doi.org/10.3390/v13061115

Hadj Hassine I. Covid-19 vaccines and variants of concern: A review. Rev Med Virol. 2022;32(4):e2313. https://doi.org/10.1002/rmv.2313

Farlow A, Torreele E, Gray G, Ruxrungtham K, Rees, H, Prasad S, et al. The Future of Epidemic and Pandemic Vaccines to Serve Global Public Health Needs. Vaccines. 2023;11(3):690. https://doi.org/10.3390/vaccines11030690

Savina K, Sreekumar R, Soonu VK, Variyar EJ. Various vaccine platforms in the field of COVID-19. Beni-Suef Univ J Basic Appl Sci. 2022;11(1):35. https://doi.org/10.1186/s43088-022-00215-1

Graña C, Ghosn L, Evrenoglou T, Jade A, Minozzi S, Bergman H, et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev. 2022;2023(3):CD015477. https://doi.org/10.1002/14651858.CD015477

Awadasseid A, Wu Y, Tanaka Y, Zhang W. Current advances in the development of SARS-CoV-2 vaccines. Int J Biol Sci. 2021;17(1):8-19. https://doi.org/10.7150/ijbs.52569

Vitiello A, Ferrara F, Troiano V, La Porta R. COVID-19 vaccines and decreased transmission of SARS-CoV-2. Inflammopharmacology. 2021;29(5):1357-1360. https://doi.org/10.1007/s10787-021-00847-2

Fiolet T, Kherabi Y, MacDonald C-J, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022;28(2):202-221. https://doi.org/10.1016/j.cmi.2021.10.005

Escobar A, Reyes-López FE, Acevedo ML, Alonso-Palomares L, Valiente Echeverría F, Soto-Rifo R, et al. Evaluation of the Immune Response Induced by CoronaVac 28-Day Schedule Vaccination in a Healthy Population Group. Front Immunol. 2022;12:1-8. https://doi.org/10.3389/fimmu.2021.766278

Yoo K, Mehta A, Mak J, Bishai D, Chansa C, Patenaude B. COVAX and equitable access to COVID-19 vaccines. Bull World Health Organ. 2022;100(05):315-328. https://doi.org/10.2471/BLT.21.287516

Prada SI, Garcia-Garcia MP, Guzman J. COVID-19 response in Colombia: Hits and misses. Heal Policy Technol. 2022;11(2):100621. https://doi.org/10.1016/j.hlpt.2022.100621

Addo IY, Dadzie FA, Okeke SR, Boadi C, Boadu EF. Duration of immunity following full vaccination against SARS-CoV-2: a systematic review. Arch Public Heal. 2022;80(1):200. https://doi.org/10.1186/s13690-022-00935-x

Zhuang C, Liu X, Chen Q, Sun Y, Su Y, Huang S, et al. Protection Duration of COVID-19 Vaccines: Waning Effectiveness and Future Perspective. Front Microbiol. 2022;13. https://doi.org/10.3389/fmicb.2022.828806

Chenchula S, Karunakaran P, Sharma S, Chavan M. Current evidence on efficacy of COVID 19 booster dose vaccination against the Omicron variant: A systematic review. J Med Virol. 2022;94 (7):2969-2976. https://doi.org/10.1002/jmv.27697

McLean G, Kamil J, Lee B, Moore P, Schulz T, Muik A, et al. The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. Prasad VR, ed. MBio. 2022;13(2):1-24. https://doi.org/10.1128/mbio.02979-21

Telenti A, Hodcroft EB, Robertson DL. The Evolution and Biology of SARS CoV-2 Variants. Cold Spring Harb Perspect Med. 2022;12(5):a041390. https://doi.org/10.1101/cshperspect.a041390

World Medical Association. WMA Declaration of Helsinki: ethical principles for medical research involving human subjects. 1974;353(1):1418-1419. http://www.wma.net/en/30publications/10policies/b3/index.html.

Ponnampalli S, Venkata Suryanarayana Birudukota N, Kamal A. COVID-19: Vaccines and therapeutics. Bioorg Med Chem Lett. 2022;75:128987. https://doi.org/10.1016/j.bmcl.2022.128987

Garcia-Beltran WF, Lam EC, St. Denis K, Nitido A, Garcia Z, Hauser B, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine induced humoral immunity. Cell. 2021;184(9):2372-2383.e9. https://doi.org/10.1016/j.cell.2021.03.013

Malagón-Rojas J, Mercado-Reyes M, Toloza-Pérez YG, Galindo M, Palma R, Catama J, et al. Comparison of Anti-SARS-CoV-2 IgG Antibody Responses Generated by the Administration of Ad26.COV2.S, AZD1222, BNT162b2, or CoronaVac: Longitudinal Prospective Cohort Study in the Colombian Population, 2021/2022. Vaccines. 2022;10(10):1609. https://doi.org/10.3390/vaccines10101609

Wolszczak-Biedrzycka B, Bienkowska A, Dorf J. Assessment of Post Vaccination Antibody Response Eight Months after the Administration of BNT1622b2 Vaccine to Healthcare Workers with Particular Emphasis on the Impact of Previous COVID-19 Infection. Vaccines. 2021;9(12):1508. https://doi.org/10.3390/vaccines9121508

Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022;23(2):186-193. https://doi.org/10.1038/s41590-021-01122-w

Park JW, Lagniton PNP, Liu Y, Xu R-H. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci. 2021;17(6):1446-1460. https://doi.org/10.7150/ijbs.59233

Melgaco JG, Azamor T, Ano Bom APD. Protective immunity after COVID-19 has been questioned: What can we do without SARS-CoV-2- IgG detection? Cell Immunol. 2020;353(January):104114. https://doi.org/10.1016/j.cellimm.2020.104114

Kato H, Miyakawa K, Ohtake N, Yamaoka Y, Yajima S, Yamazaki E, et al. Vaccine-induced humoral response against SARS-CoV-2 dramatically declined but cellular immunity possibly remained at 6 months post BNT162b2 vaccination. Vaccine. 2022;40(19):2652-2655. https://doi.org/10.1016/j.vaccine.2022.03.057

Shay DK, Gee J, Su JR, Myers TR, Marquez P, Liu R, et al. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine - United States, March-April 2021. MMWR Morb Mortal Wkly Rep. 2021;70(18):680-684. https://doi.org/10.15585/mmwr.mm7018e2

Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416. https://doi.org/10.1056/NEJMoa2035389

Renia L, Goh YS, Rouers A, Le Bert N, Chia WN, Chavatte JM, et al. Lower vaccine-acquired immunity in the elderly population following two-dose BNT162b2 vaccination is alleviated by a third vaccine dose. Nat Commun. 2022;13(1):4615. https://doi.org/10.1038/s41467-022-32312-1

Antonelli M, Penfold RS, Merino J, Sudre CH, Molteni E, Berry S, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community based, nested, case-control study. Lancet Infect Dis. 2022;22(1):43-55. https://doi.org/10.1016/S1473-3099(21)00460-6

Van Elslande J, Oyaert M, Ailliet S, Van Ranst M, Lorent N, Vande Weygaerde Y, et al. Longitudinal follow-up of IgG anti-nucleocapsid antibodies in SARS-CoV-2 infected patients up to eight months after infection. J Clin Virol. 2021;136:104765. https://doi.org/10.1016/j.jcv.2021.104765

Burbelo PD, Riedo FX, Morishima C, Rawlings S, Smith D, Das S, et al. Detection of Nucleocapsid Antibody to SARS-CoV-2 is More Sensitive than Antibody to Spike Protein in COVID-19 Patients. medRxiv Prepr Serv Heal Sci. 2020. https://doi.org/10.3390/vaccines10101609

Wei Z, Angrisano F, Eriksson EM, Mazhari R, Van H, Anderson DA. Serological assays to measure dimeric IgA antibodies in SARS-CoV-2 infections. 2023;2:857-866. https://doi.org/10.1111/imcb.12682

Feng S, Phillips DJ, White T, Sayal H, Aley PK, Bibi S, et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med. 2021;27(11):2032-2040. https://doi.org/10.1038/s41591-021-01540-1

Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205-1211. https://doi.org/10.1038/s41591-021-01377-8

Artículos más leídos del mismo autor/a