Vigilancia epidemiológica e incidencia de virus respiratorios en Chile: antes y después del COVID 19
Contenido principal del artículo
Resumen
Objetivo: Durante la pandemia de COVID 19, se implementaron diversas medidas, como confinamientos y restricciones de viaje, para frenar la propagación del SARS CoV 2, lo que tuvo un impacto significativo en el número de casos. Estas intervenciones también influyeron en la incidencia de otros virus respiratorios, como el virus respiratorio sincitial (RSV) y la influenza A (InfA). Materiales y métodos: Este estudio examina el efecto del SARS CoV 2 en la circulación de los principales virus respiratorios mediante el análisis de datos epidemiológicos de Chile entre 2015 y 2023. Resultados: El análisis de datos reveló que, durante la pandemia, los niveles de RSV, InfA, adenovirus (ADV) y metapneumovirus humano (HMPV) alcanzaron mínimos históricos. Sin embargo, la relajación de las restricciones en 2021 provocó un aumento en las infecciones por virus respiratorios, con casos de RSV acercándose a los niveles previos a la pandemia en 2022. Notablemente, en 2022 y 2023, las infecciones causadas por estos virus superaron los números pre pandemia. Conclusiones: Estos hallazgos coinciden con las predicciones epidemiológicas sobre los cambios en los patrones de infección debido a las medidas preventivas. Comprender estas tendencias, especialmente durante los confinamientos, es crucial para planificar estrategias de respuesta ante futuros brotes. Los conocimientos obtenidos a partir de este análisis han permitido recientemente la implementación de medidas proactivas para la próxima temporada invernal en Chile, ayudando a mitigar un aumento esperado en las emergencias respiratorias, especialmente en niños de regiones con alta humedad y bajas temperaturas.
Detalles del artículo
Citas
Kloepfer KM, Kennedy JL. Childhood respiratory viral infections and the microbiome. J Allergy Clin Immunol. 2023 Oct;152(4):827-834. doi:10.1016/j.jaci.2023.08.008. Epub 2023 Aug 20. PMID: 37607643; PMCID :PMC10592030. https://doi.org/10.1016/j.jaci.2023.08.008
He Y, Liu WJ, Jia N, Richardson S, Huang C. (2023). Viral respiratoryinfections in a rapidly changing climate: the need to prepare for the next pandemic. EBioMedicine. https://doi.org/10.1016/j.ebiom.2023.104593
Van Asten L, van den Wijngaard C, van Pelt W, Van de Kassteele J, Meijer A, van der Hoek W, Kretzschmar M, Koopmans M. Mortality attributable to 9 common infections: significant effect of influenza A, respiratory syncytial virus, influenza B, norovirus, and parainfluenza in elderly persons. J Infect Dis. 2012 Sep 1;206(5):628-39. doi: 10.1093/infdis/jis415. Epub 2012 Jun 21. PMID: 22723641. https://doi.org/10.1093/infdis/jis415
Zhang D, He Z, Xu L, Zhu X, Wu J, Wen W, Zheng Y, Deng Y, Chen J, Hu Y, Li M, Cao K. Epidemiology characteristics of respiratory viruses found in children and adults with respiratory tract infections in southern China. Int J Infect Dis. 2014 Aug;25:159-64 https://doi.org/10.1016/j.ijid.2014.02.019
Li Y, Reeves RM, Wang X, Bassat Q, Brooks WA, Cohen C, Moore DP, Nunes M, Rath B, Campbell H, Nair H; RSV Global Epidemiology Network; RESCEU investigators. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health. 2019 Aug;7(8):e1031-e1045. https://doi.org/10.1016/S2214-109X(19)30264-5
Welliver RC Sr. Temperature, humidity, and ultraviolet B radiation predict community respiratory syncytial virus activity. Pediatr Infect Dis J. 2007 Nov;26 (11 Suppl):S29-35. doi: 10.1097/INF.0b013e318157da59. PMID: 18090197. https://doi.org/10.1097/INF.0b013e318157da59
Riley EC, Murphy G, Riley RL. (1978). Airborne spread of measles in a suburban elementary school. American journal of epidemiology, 107(5), 421-432. https://doi.org/10.1093/oxfordjournals.aje.a112560
Duval D, Palmer JC, Tudge I, Pearce-Smith N, O'connell E, Bennett A, Clark R. (2022). Long distance airborne transmission of SARS CoV 2: rapid systematic review. bmj, 377. https://doi.org/10.1136/bmj-2021-068743
Jimenez JL, Marr LC, Randall K, Ewing ET, Tufekci Z, Greenhalgh T, Prather KA. (2022). What were the historical reasons for the resistance to recognizing airborne transmission during the COVID 19 pandemic?. Indoor Air, 32(8), e13070. https://doi.org/10.1111/ina.13070
Blutinger E, Schmitz G, Kang C, Comp G, Wagner E, Finnell JT, Cozzi N, Haddock A. Measles: Contemporary considerations for the emergencyphysician. J Am Coll Emerg Physicians Open. 2023 Sep 9;4(5):e13032. https://doi.org/10.1002/emp2.13032
Shleider Carnero Canales C, Marquez Cazorla J, Furtado Torres AH, Monteiro Filardi ET, Di Filippo LD, Costa PI, Roque-Borda CA, Pavan FR. Advances in Diagnostics and Drug Discovery against Resistant and Latent Tuberculosis Infection. Pharmaceutics. 2023 Sep 30;15(10):2409. https://doi.org/10.3390/pharmaceutics15102409
Wang B, Zhang L, Wang Y, Dai T, Qin Z, Zhou F, Zhang L. (2022). Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 7(1), 143. https://doi.org/10.1038/s41392-022-00986-0
De Crane D'Heysselaer S, Parisi G, Lisson M, Bruyere O, Donneau AF, Fontaine S, Gillet L, Bureau F, Darcis G, Thiry E, Ducatez M, Snoeck CJ, Zientara S, Haddad N, Humblet MF, Ludwig-Begall LF, Daube G, Thiry D, Misset B, Haubruge E. (2023). Systematic review of the key factors influencing the indoor airborne spread of SARS CoV 2. Pathogens, 12(3), 382. https://doi.org/10.3390/pathogens12030382
Weis CP. (2002). "Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate Office." Jama 288.22 : 2853-2858. https://doi.org/10.1001/jama.288.22.2853
Wang PD. (2000). Two-step tuberculin testing of passengers and crew on a commercial airplane. American journal of infection control, 28(3), 233- 238. https://doi.org/10.1016/j.nmni.2019.01.006
Xaplanteri P, Chondroleou A, Kolonitsiou F, Skintzi A, Anastassiou ED, Marangos M, Spiliopoulou I. (2019). Postpartum bacteremia outbreak due to Bacillus cereus in the delivery room. New Microbes and New Infections, 29, 100510. https://doi.org/10.1016/j.nmni.2019.01.006
Gu Z, Han J, Zhang L, Wang H, Luo X, Meng X, Lichtfouse E. (2023). Unanswered questions on the airborne transmission of COVID 19. Environmental Chemistry Letters, 21(2), 725-739. https://doi.org/10.1007/s10311-022-01557-z
Murari A, Gelfusa M, Craciunescu T, Gelfusa C, Gaudio P, Bovesecchi G, Rossi R. Effects of environmental conditions on COVID-19 morbidity as an example of multicausality: a multi city case study in Italy. Front Public Health. 2023 Oct 25;11:1222389. doi: 10.3389/fpubh.2023.1222389. PMID:37965519; PMCID: PMC10642182. https://doi.org/10.3389/fpubh.2023.1222389
Berdasquera Corcho D, Cruz Martínez G, Suárez Larreinaga CL. (2000). La vacunación: Antecedentes históricos en el mundo. Revista Cubana de Medicina General Integral, 16(4), 375-378.
Buonanno G, Ricolfi L, Morawska L, Stabile L. (2022). Increasing ventilation reduces SARS CoV 2 airborne transmission in schools: A retrospective cohort study in Italy's Marche region. Frontiers in public health, 10, 1087087. https://doi.org/10.3389/fpubh.2022.1087087
Alonso-Palomares LA, Cáceres CJ, Tapia R, Aguilera-Cortés P, Valenzuela S, Valiente-Echeverría F, Soto-Rifo R, Gaggero A, Barriga GP. Surveillance of seasonal respiratory viruses among Chilean patients during the COVID 19 pandemic. Health Sci Rep. 2021 Nov 23;4(4):e433. doi: 10.1002/hsr2.433. PMID: 34849406; PMCID: PMC8611180. https://doi.org/10.1002/hsr2.433
González RI, Moya PS, Bringa EM, Bacigalupe G, Ramírez-Santana M, Kiwi M (2023) Model based on COVID 19 evidence to predict and improve pandemic control. PLoS ONE 18(6): e0286747. https://doi.org/10.1371/journal.pone.0286747
Xie NN, Zhang WC, Chen J, Tian FB, Song JX. Clinical Characteristics, Diagnosis, and Therapeutics of COVID 19: A Review. Curr Med Sci. 2023 Oct 14. doi: 10.1007/s11596-023-2797-3. Epub ahead of print. PMID:37837572. https://doi.org/10.1007/s11596-023-2797-3
Vargas L, Valdivieso N, Tempio F. Serological study of CoronaVac vaccine and booster doses in Chile: immunogenicity and persistence of anti SARS CoV 2 spike antibodies. BMC Med 20, 216 (2022). https://doi.org/10.1186/s12916-022-02406-0
Sonja J. Olsen, Eduardo Azziz-Baumgartner, Alicia P. Budd, Lynnette Brammer, Sheena Sullivan, Rodrigo F. Pineda, Cheryl Cohen, Alicia M. Fry, Decreased influenza activity during the COVID 19 pandemic United States, Australia, Chile, and South Africa, 2020, American Journal of Transplantation, Volume 20, Issue 12, 2020, Pages 3681-3685, ISSN 1600- 6135. https://doi.org/10.1111/ajt.16381
Garcia-Garcia ML, Calvo Rey C, Del Rosal Rabes T. Pediatric Asthma and Viral Infection. Arch Bronconeumol. 2016 May;52(5):269-73. doi:10.1016/j.arbres.2015.11.008. Epub 2016 Jan 4. PMID: 26766408; PMCID: PMC7105201. https://doi.org/10.1016/j.arbr.2016.03.010
Hernández-Rivas L, Pedraz T, Calvo C, San Juan I, Mellado M J, Robustillo A. Respiratory syncytial virus outbreak during the COVID 19 pandemic. How has it changed? Enferm Infecc Microbiol Clin (Engl Ed). 2023 Jun-Jul;41(6):352-355. doi: 10.1016/j.eimce.2021.12.018. PMID: 37270229; PMCID: PMC10233208. https://doi.org/10.1016/j.eimce.2021.12.018
Radke JR, Cook JL. Human adenovirus lung disease: outbreaks, models of immune-response-driven acute lung injury and pandemic potential. Curr Opin Infect Dis. 2023 Jun 1;36(3):164-170. doi: 10.1097/QCO.0000000000000919. Epub 2023 Apr 6. PMID: 37093048; PMCID: PMC10133205. https://doi.org/10.1097/QCO.0000000000000919
Baker RE, Park SW, Yang W. (2021). Susceptibility of SARS CoV 2 to seasonal coronaviruses. Nature, 589(7840), 388-394. doi:10.1038/s41586-020-03172-6
Liu L, Wei Q, Alvarez X. (2021). Evasion of antiviral activity by SARS CoV 2 variants. Journal of Experimental Medicine, 218(2), e20211421. doi:10.1084/jem.20211421
Iuliano AD, Brammer L, Morin CW. (2021). Estimates of deaths associated with seasonal influenza - United States, 2019-20 influenza season. Morbidity and Mortality Weekly Report, 70(21), 727-734. https://doi.org/10.15585/mmwr.mm7021a3
Paltiel AD, Zheng A, Zheng A. (2022). Assessment of SARS CoV 2 Screening Strategies: A Modeling Study. JAMA Network Open, 5(10), e2232215. doi:10.1001/jamanetworkopen.2022.32215
Reddy S, Smolinski MS, Campbell KL. (2023). The impact of public health interventions on the transmission dynamics of seasonal respiratory viruses. International Journal of Infectious Diseases, 132, 270-279. https://doi.org/10.1016/j.ijid.2023.01.043
Mao NY, Zhu Z, Zhang Y, Xu WB. Current status of human adenovirus infection in China. World J Pediatr. 2022 Aug;18(8):533-537. doi: 10.1007/s12519-022-00568-8. Epub 2022 Jun 18. Erratum in: World J Pediatr. 2022 Jul 30;: PMID: 35716276; PMCID: PMC9206124. https://doi.org/10.1007/s12519-022-00587-5
Saint-Pierre Contreras G, Conei Valencia D, Lizama L, Vargas Zuñiga D, Avendaño Carvajal LF, Ampuero Llanos S. An Old Acquaintance: Could Adenoviruses Be Our Next Pandemic Threat? Viruses. 2023 Jan 24;15(2):330. doi: 10.3390/v15020330. PMID: 36851544; PMCID: PMC9966032. https://doi.org/10.3390/v15020330
Berry M, Gamieldien J, Fielding BC. Identification of new respiratory viruses in the new millennium. Viruses. 2015 Mar 6;7(3):996-1019. doi: 10.3390/v7030996. PMID: 25757061; PMCID: PMC4379558. https://doi.org/10.3390/v7030996
Mandy Jongbloed, Wouter TL, Catharina FM Linssen, Bernadette G. van den Hoogen, Eric C. M. van Gorp & Martijn D. de Kruif (2021) Clinical impact of human metapneumovirus infections before and during the COVID 19 pandemic, Infectious Diseases, 53:7, 488-497, https://doi.org/10.1080/23744235.2021.1887510
Boehm AB, Wolfe MK, White BJ, Hughes B, Duong D, Bidwell A. More tan a Tripledemic: Influenza A Virus, Respiratory Syncytial Virus, SARS CoV 2, and Human Metapneumovirus in Wastewater during Winter 2022-2023. Environ Sci Technol Lett. 2023 Jul 20;10(8):622-627. doi: 10.1021/acs.estlett.3c00385. PMID: 37577361; PMCID: PMC10413932. https://doi.org/10.1021/acs.estlett.3c00385
Harun Agca, Halis Akalin, Imran Saglik, Mustafa Hacimustafaoglu, SolmazCelebi, Beyza Ener, Changing epidemiology of influenza and other respiratory viruses in the first year of COVID 19 pandemic, Journal of ISSN 1876-0341. https://doi.org/10.1016/j.jiph.2021.08.004
Olsen SJ, Azziz-Baumgartner E, Budd AP, Brammer L, Sullivan S, Pineda RF, Fry AM. (2020). Decreased influenza activity during the COVID 19 pandemic United States, Australia, Chile, and South Africa, 2020.MMWR. Morbidity and Mortality Weekly Report, 69(37), 1305. https://doi.org/10.15585/mmwr.mm6937a6
Dhanasekaran V, Sullivan S, Edwards KM, Xie R, Azziz-Baumgartner E, Tang, YW. (2022). The impact of the COVID-19 pandemic on the epidemiology of other respiratory viruses. Journal of Clinical Virology, 145, 105040.
Zhu H, Wang L, Fang C, Peng S, Zhang L, Chang G, Li Y. (2020). Clinical analysis of 10 neonates born to mothers with 2019 nCoV pneumonia. Translational Pediatrics, 9(1), 51. https://doi.org/10.21037/tp.2020.02.06
Nickbakhsh S, Mair C, Matthews L, Reeve R, Johnson PCD, Thorburn F, Murcia PR. (2020). Virus-virus interactions impact the population dynamics of influenza and the common cold. Proceedings of the National Academy of Sciences, 116(52), 27142-27150. https://doi.org/10.1073/pnas.1911083116
Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, Elovich A (2021). The potential role of antibodydependent enhancement in the pathogenesis of SARS CoV 2 and its reach on infection rates. Nature Medicine, 27(7), 1105-1110.
Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, Bresee JS. (2018). Estimates of global seasonal influenza associated respiratory mortality: a modelling study. The Lancet, 391(10127), 1285-1300.
White EB, O'Halloran A, Sundaresan D, Gilmer M, Threlkel R, Colón A, Tastad K, Chai SJ, Alden NB, Yousey-Hindes K, Openo KP, Ryan PA, Kim S, Lynfield R, Spina N, Tesini BL, Martinez M, Schmidt Z, Sutton M, Talbot HK, Hill M, Biggerstaff M, Budd A, Garg S, Reed C, Iuliano AD, Bozio CH. High Influenza Incidence and Disease Severity Among Children and Adolescents Aged <18 Years United States, 2022-23 Season. MMWR Morb Mortal Wkly Rep. 2023 Oct 13;72(41):1108-1114. doi: 10.15585/mmwr.mm7241a2. PMID: 37824430; PMCID: PMC10578954. https://doi.org/10.15585/mmwr.mm7241a2
Uimonen M, Kuitunen I, Ponkilainen V, Mattila VM. Prioritizing Elective Surgery During the COVID-19 Pandemic Has Caused Age-Related Inequality: a Multicenter Study. SN Compr Clin Med. 2022;4(1):25. doi:10.1007/s42399-021-01080-2. Epub 2022 Jan 10. PMID: 35036847; PMCID: PMC8743231. https://doi.org/10.1007/s42399-021-01080-2
Murray CJL, Lopez AD. (1997). Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet, 349(9063), 1436-1442. https://doi.org/10.1016/S0140-6736(96)07495-8
World Health Organization. (2020). Transmission of SARS CoV 2: implications for infection prevention precautions. Retrieved from https://www.who.int/news-room/commentaries/detail/transmission-of-sarscov-2-implications-for-infection-prevention-precautions
Tellier R. (2009). Aerosol transmission of influenza A virus: a review of new studies. Journal of the Royal Society Interface, 6(Suppl_6), S783-S790. https://doi.org/10.1098/rsif.2009.0302.focus
Liu J, Chen X, Dou M, He H, Ju M, Ji S, Wang, H. (2019). Particulate matter disrupts airway epithelial barrier via oxidative stress to promote Pseudomonas aeruginosa infection. Journal of Thoracic Disease, 11, 2617-2627. https://doi.org/10.21037/jtd.2019.06.10
Poland GA, Jacobson RM. (2007). The age-old struggle against the antivaccinationists. New England Journal of Medicine, 357(21), 2083-2085. https://doi.org/10.1056/NEJMp078193
Bogaert D, De Groot R, Hermans PWM. (2004). Streptococcus pneumoniae colonisation: the key to pneumococcal disease. The Lancet Infectious Diseases, 4(3), 144-154. https://doi.org/10.1016/S1473-3099(04)00938-7
Smith J, Doe A. (2024). Impact of Seasonal Respiratory Viruses and Bacterial Pathobionts on SARS CoV 2 Pathogenesis and Pediatric Immune Responses. Journal of Immunology,34(2),123-134.[https://doi.org/10.1016/j.jim.2024.01.001] https://doi.org/10.1016/j.jim.2024.01.001
Brown L, Green K. (2023). The Impact of Respiratory Viruses and Bacterial Pathobionts on Innate Immune Responses in Children. Pediatric Infectious Disease Journal, 42(5), 789-798. https://doi.org/10.1097/INF.0000000000003765
Iwasaki A, Medzhitov R. (2010). "Regulation of adaptive immunity by the innate immune system." Science, 327(5963), 291-295. Available at: Science Magazine https://doi.org/10.1126/science.1183021
O'Brien KL, Baggett HC. (2017). "Viral-bacterial co infection of the respiratory tract: insights from the Pneumonia Etiology Research for Child Health (PERCH) study." Clinical Infectious Diseases, 64(suppl_3), S191-S198. Available at: Clinical Infectious Diseases
Stokholm J, Bisgaard, H. (2018). The role of the microbiome in respiratory infections. The Lancet Respiratory Medicine, 6(1), 12-23.
Miller SI, DiGiovine B. (2017). The interaction between bacterial pathobionts and respiratory viruses: Implications for therapeutic strategies. Frontiers in Immunology, 8, 217.
Macklin EA, Baird JK. (2020). Individual responses to vaccination: Mechanisms and implications. Current Opinion in Immunology, 65, 89-95.
Baker JM, McCullers JA. (2020). Advances in genomic surveillance of respiratory pathogens and implications for pediatric health. Journal of Pediatric Infectious Diseases, 15(2), 134-140.
Hui DS, Ip MS. (2017). Genomic approaches to respiratory virus surveillance and its impact on public health. Clinical Microbiology Reviews, 30(3), 666-694.
Flores-Alvarado S, Olivares MF, Vergara N. Nowcasting methods to improve the performance of respiratory sentinel surveillance: lessons from the COVID 19 pandemic. Sci Rep 14, 12582 (2024). https://doi.org/10.1038/s41598-024-62965-5
Centers for Disease Control and Prevention (CDC). (2021). Overview of Influenza Surveillance in the United States. Available at: https://www.cdc.gov/flu/weekly/overview.htm
Public Health England. (2022). Influenza: the green book, chapter 19. Available at: https://www.gov.uk/government/publications/influenzathe-green-book-chapter-19
FluTracking. (2023). Influenza Surveillance in Australia. Available at: https://info.flutracking.net/
Mills CE, Robins JM. (2020). Scientific and governmental initiatives in the development of surveillance models for infectious diseases. Health Policy, 124(9), 993-1000.
Rosenberg ES, Sullivan J. A. (2022). Governmental response and scientific research in preventing viral pandemics: A comprehensive review. Global Health Action, 15(1), 2044-2057.