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EDITORIAL

Recipe ingredients for re emergent protozoa:  
climatic change, rain, zoonosis, mountain and food
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When someone says that global concentrations of carbon 
dioxide (CO2) have continued to increase in the atmosphere 
to reach annual averages of 410 parts per million, it does not 
mean much to most people1. But certainly, the consequen-
ces of the changes derived from alterations on the hydro-
logical and meteorological cycles have an impact on many 
living systems, including zoonosis2. Global climate change 
produces ecological perturbations, which cause phenologi-
cal shifts, as well as alterations in parasite transmission, with 
the potential for host switching3–5. The intersection of climate 
change with transmission dynamics, called ecological fitting, 
permits emergence of parasites and diseases without evolu-
tionary changes in their capacity for host utilization6–8.

Climate change is causing the resurgence of many parasites. 
Neglected tropical diseases such as toxocariasis are now incre-
asing the number of children with blindness in urban settings; 
this situation is intrinsically and surprisingly linked to rain ano-
malies9,10. Toxocariasis is one of the neglected tropical disea-
ses that should be considered a priority for zoonotic control 
programs. But it is not the only one; there are other parasitic 
infections requiring even greater attention, with an integra-
ted and multidisciplinary reflection on the type of measure-
ments that need to be taken. Important human pathogenic 
parasite protozoa such as Toxoplasma, Cyclospora, Cryptospo-
ridium and Giardia share water and foodborne transmission 

as major determinants of their prevalence in human popula-
tions11–14. Wild, companion animals, and faunal species used 
for food production are related to the zoonotic transmission 
of the above-mentioned diseases, making them targets of the 
One Health approach15–19. In addition, the interplay between 
agriculture boundary expansion, alterations of natural ecosys-
tems, and the introduction of animal species for food pro-
duction in these modified environments create conditions for 
changes in the chain of transmission20,21. Mountains have been 
identified as essential for food production in many countries22. 
The complexity of mountain agricultural systems, which usua-
lly involve a mixture of vegetables and fruit cultivars, as well as 
cattle (cows, sheep, pigs) and poultry, make them “perfect” en-
vironments for the increase in contact between protozoa and 
food products22–24. The recipe for the increased transmission 
of pathogens has as one of its ingredients the raising of pre-
cipitation rates, a direct consequence of global warming2,25–28. 
More rain causes an increase in water runoff from the soil 
of mountains into the rivers that are the source of drinka-
ble water for towns downstream25,28,29. Chlorine treatment of 
drinkable water does not eliminate protozoans, acting as the 
“cherry on top” for re-emergent protozoa infection30,31. These 
circumstances can easily explain the changing epidemiologi-
cal situation we are facing in the frequency of these protozoa 
in humans with health and economic consequences that have 
not yet been fully evaluated32–34.
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As a corollary, it is urgent that academic, health, and en-
vironmental authorities, as well as agriculture producers, 
coordinate actions to control and limit the burden of the di-
seases caused by the consequences of climate change lea-
ding to the reemergence of these human pathogens (Figu-
re). One aspect that needs to be considered as part of this 

emergent situation is that the mathematical models used 
to predict the dynamics of infectious disease transmission 
should incorporate climatic variables as well as the number 
of abandoned pets that are causing the resurgence of en-
demic infections that generate critical new human health 
challenges35,36.
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